

Measurement of Powders and Highloss Liquids using Resonant Cavities

José M. Catalá-Civera Universidad Politécnica de Valencia, Spain

WMA: Overview of Advanced Dielectric Measurement Techniques

- Introduction
- Measurement techniques for dielectrics
- Transmission line methods (nonresonant)
- Cavity methods (resonant)
- Coupling of microwave resonators
- Results of measurements of high and low loss dielectrics
- Conclusions

Measurement Techniques

- Transmission lines (Nonresonant)
 - Wave velocity slower,
 - Wavelength shorter
 - Impedance lower,
 - Magnitude attenuated
 - Wide frequency range
 - Good accuracy for dielectric constant
 - Not suitable for low losses (*)
- Cavity Methods (Resonant)
 - Resonant frequency shifted
 - Q-factor lower
 - Measurement at one frequency only
 - Accurate for dielectric constant and loss factor

Transmission Lines

• Examples of transmission lines: waveguides of rectangular, circular section, coaxial cables, planar circuits, etc.

• Reflection from open-ended coaxial probes (10 MHz-50GHz)

 $Y = j\omega C_f + j\omega \varepsilon C_0(\omega, \varepsilon) + \omega^4 \varepsilon^{5/2} G(\omega)$ (Coaxial), (Material), (Radiation)

• Open-ended Coaxial Probe (moderate and high loss materials)

 Measurement of <u>Cyclohexane</u> (low loss material) with an openended Coaxial Probe

• Open-ended Coaxial Probe Mapping (5 GHz)

Transmission/Reflection Method

• Dielectric and Magnetic properties are feasible with these methods

ITACA Institute, Valencia, Spain

ITACA Institute, Valencia, Spain

NIST, Boulder, USA

Cavity Methods (Resonant)

Measurement of resonant frequency and Q-factor of a microwave cavity.

TM_{0n0} Cavity. ITACA Institute, Valencia (Spain)

• Measuring a resonator involves using feeding mechanisms (e.g. apertures, slits, probes, current loops, microstrip gaps, etc.) that modify the original unloaded response: resonance frequency is shifted to $f_{\rm L}$, and the quality factor is lowered to $Q_{\rm L}$.

Unloaded/Loaded Resonant Frequencies

- Theoretical Cavity
 - 1. The resonant frequency depends on the E-fields of the resonant mode
 - 2. Resonant frequency named unloaded $(f_{\rm U})$.
 - 3. The Q-factor depends on the losses of the cavity walls and dielectric

Coupled cavity

- The resonant frequency depends on both the E-fields of the resonant mode and the coupling circuit.
- 2. Resonant frequency named loaded (f_L).
- 3. The Q-factor depends on the losses of cavity walls, dielectric and coupling circuit

Equivalent Circuits in the vicinity of the Resonance

- Foster's forms (1 port) Calibration Detuned-open Coupling plane plane network Resonator Calibration Detuned-short Coupling plane plane network Resonator $r_e + j x_e$ $\xi_{l_0} \stackrel{\perp}{=} \xi_{r_0} \xi_{r_0}$ $z_c = 1$ $r_{c} = 1$ $k = \frac{P_{ex}}{P_o} = \frac{r_{ex}}{n^2 r} = \frac{Q_U}{O}$ Γ m 11 Γ. $f_L = f_U \left(1 + \frac{x_e}{2 \cdot O} \right) = f_U \left(1 + \frac{kx_e}{2 \cdot O} \right)$ $Q_L = \frac{Q_U}{1 + L}$ $f_L = f_U \cdot \left(1 + \frac{b_e}{2 \cdot O}\right)$
- Low-loss materials (i.e. $Q_{\rm U}$ =5000, k=1, $Q_{\rm e}$ =5000, $f_{\rm L} \cong f_{\rm U}$)
- High-loss materials (i.e. $Q_U=10$, k=1, $Q_e=10$, $f_L \neq f_U$) (High-loss materials require deembedding the coupling network)

Single-post coaxial reentrant cavity

 The dielectric measurement for liquid and powder materials cell is designed as a single-post coaxial reentrant cavity with a partially dielectric filled gap.

Single-post coaxial reentrant cavity

• Representation of the relationship of the dielectric properties and the resonant frequency and factor calculated by mode-matching method of the measurement cell.

Coupling Network of the cavity

- The shift of the loaded resonant frequency (f_L) from the unloaded resonant frequency (f_U) increases as the coupling increases.
- The external Q-factor (Q_e) reduces when the coupling increases.

• The measurement of several resonances (f_L, Q_L, Q_e) under different coupling conditions can provide the evolution of the loaded resonance (f_L) towards the unloaded resonance (f_U) .

$h_3 (\mathrm{mm})$	f_L (GHz)	Q_e	Q_u	x _e
0.5	2.497397	9660.42	872.42	4.4212
2.5	2.496378	4316.41	874.23	3.9511
4.5	2.494762	2213.51	873.18	3.6117
6.5	2.492348	1238.53	873.82	3.3694
8.0	2.489226	764.57	871.35	3.2153
8.6	2.483620	416.68	871.61	3.1539
8.9	2.472800	203.80	872.87	3.1356

$$f_L = \left(1 + \frac{A}{Q_e^{\alpha}}\right) f_0 \quad (5)$$

Antoni J. Canos, et al., "A Novel Technique for Deembedding the Unloaded Resonance Frequency From Measurements of Microwave Cavities", IEEE Trans. on MTT, Vol. 54(8), 2006.

Unloaded/Loaded Resonant Frequencies

• Measurement of resonant frequency and Q-factor in a cavity with different coupling conditions ($Q_e=110$ and $Q_e=9000$).

 $\frac{1}{Q_{L}} = \frac{1}{Q_{e}} + \frac{1}{Q_{o}} + \frac{1}{Q_{d}}$

Coupling Network of the cavity

• The microwave cavity is coupled trough a feeding network which couples the energy from the source. In this cavity, the feeding network is an electric probe which penetrates a certain distance (h_3) into the cavity.

Antoni J. Canos, et al., "A Novel Technique for Deembedding the Unloaded Resonance Frequency From Measurements of Microwave Cavities", IEEE Trans. on MTT, Vol. 54(8), 2006.

Coupling Network of the cavity

• Open-ended coaxial resonator excited by a magnetic loop

Measurement Results

Material (25°C)	f_U (GHz)	$\mathcal{Q}_{\scriptscriptstyle U}$	arepsilon'	arepsilon''	\mathcal{E}' [Ref]	$\mathcal{E}''[\operatorname{Ref}]$	References
Air	2.57053	2440.13	1.00	0.0000	1.000	0.0000	
Distilled Water	1.91201	39.55	76.95	6.3250	77.83	6.789	[*]
Dimethyl Sulphoxide	2.06868	17.51	44.27	9.0110	45.02	8.966	[*]
Methanol	2.21512	7.35	23.89	14.7540	24.96	14.188	[*]
2-Propanol	2.50933	24.28	4.20	2.9250	3.89	2.724	[*]
Quartz Sand	2.54251	2086.47	2.49	0.0032	2.27	0.012	[**]
F100 – (powder)	2.44193	59.08	8.40	1.2890	8.49	1.335	[**]
Paraphyn – granulated	2.55722	2274.78	1.719	0.0008	1.77	0.011	[**]

[*] A.P. Gregory et al, "Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5GHz" NPL Report MAT 23, 2009.

[**] Measurements performed with Agilent coaxial probe HP-85070B. (Not suitable for low losses materials).

Measurement Results

• Dielectric kit for Vials

Conclusions

- Transmission Line (nonresonant) techniques for dielectrics can provide accurate and broadband measurements of moderate and high loss dielectric and magnetic materials.
- Cavity techniques (resonant) provide accurate values for dielectric or magnetic low loss materials at the resonant frequencies.
- Cavity techniques (resonant) applied to high-loss materials require deembedding the coupling network of the cavity.
- The resonant cavity allows for the characterization of both low and high loss materials.
- Measurement results are in good agreement with measurements performed by other techniques.